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Vibrational levels of A are computed using the Lanczos algorithm and a large basis set. We find both even-
and odd-parity states with wave functions that are invariant with respect to permutations of the Ar atoms.
The odd-parity bosonic levels have not been computed previously. The even-parity levels are close to those
obtained using the correlation-function Monte Carlo method (CFMC).

I. Introduction functions have odd parity. Because Ar is a boson, we denote
) ) ) these odd-parity bosonic states. Nightingale and Melik-Alaver-

The only reliable, systematically improvable methods for ian did not calculate the odd-parity states because the trial basis
computing energy levels of molecules and clusters rely on basisgnctions (and hence the MC projected functions) they used
functions. For many molecules, low-lying levels can be obtained depend only on the interatomic distances of. Ahe interatomic
using approaches based on perturbation theory, but for looselygjistances are all invariant under the inversion operation, and
bound clusters, even the lowest levels must be determined byi,arefore, basis functions that depend only on the interatomic
computing eigenvalues of a Hamiltonian matrix representing gistances are invariant under the inversion operation; none of
the Hamiltonian operator in a basis’ The cost of such a i pasis functions have odd pariyUsing the same type of
calculation scales poorly with basis set size. The simplest bas'strial basis functions to compute levels ofsAone does not miss
functions are products of functions of a single variable. If a |g\e|s33 This is due to the fact that molecules or clusters with
full direct product basis is used, many product functions are fe\yer than four atoms have no odd-parity vibrational levels.
required to calculate even the lowest energy le¥asnitting Four-atom clusters have odd-parity levels because at least one
some of the product functions enables one to drastically reduce¢ the coordinates used to specify the shape of the cluster is
the number of basis functiofis!! Direct product and nondirect  oftacted by the inversion operator. Blume and Greene have also
product contracted functiot’s2! allow one to compute accurate computed even-parity levels of A% They use an adiabatic
spectra of molecules (or clusters) with several at6h#3:2°1t o spherical approach. They missed the odd-parity levels
is nevertheless clear that, even using contracted basis functionsyacause they computed only the lowest bend level for each
calculations for clusters with many atoms are not possible. hyperspherical radius value.

The correlation-function Monte Carlo method (CFMC¥ Our basis set calculation yields both levels whose wave
appears to be very promising. It does use basis functions, but afunctions are invariant under permutation of any two atoms and
Monte Carlo imaginary-time projection method is used to obtain |eyels that are missing in nature because their wave functions
a very compact basis. The Monte Carlo imaginary-time projector are not invariant under permutation of any two atoms. We must
removes wave functions with larger energies from a starting pe able to distinguish between the two groups. If our levels
basis of optimized many-parameter trial functions. Overlap and were labeled by irreducible representations of the full symmetry
Hamiltonian matrix elements are Computed in the final Monte group of An, this would be easy. We use (Jacobi) coordinates
Carlo projected basis, and a small generalized eigenvaluejn which the kinetic energy operator (KEO) is simple but that
problem is solved. This method has been used to computedo not allow us to exploit all of the symmetry of Afnstead,
bound-state energies for several molecéfed In an impreSSiVe we exp|0it some of the symmetry and work in a Subgroup of
paper, Nightingale and Melik-Alaverdi#hcomputed vibra-  the full symmetry group and obtain levels labeled by irreducible
tionally excited levels of Arwith nup to 7 using the CFMC  representations of the subgroup. We call the subgroup the
method and forcing trial functions to be invariant with respect coordinate symmetry group. We use the correlation between
to permutation of Ar atoms. More accuratesAevels were later the full symmetry group and the coordinate symmetry group to
published in ref 32. Given the floppy nature of Ar clusters; Ar  assign, without examining the wave functions, irreducible

is certainly well beyond the reach of standard contracted basisrepresentations of the full symmetry group to the computed
set methods. For Arand other rare-gas trimers, CFMC results  |eyels.

have been compared with levels computed with direct product
basis setdl33 [I. Hamiltonian and Basis Functions
The goal of this paper is twofold. First, for Awe compare The coordinates we use are the spherical polar coordinates
energy levels computed with a product basis Lanczos methodassociated with the diatortdiatom Jacobi vectors (see the upper
to those obtained by Nightingale and Melik-Alaverdian. Second, panel of Figure 1). The KEO is well-know#i.The notation we
we present, for the first time, Arenergy levels whose wave use is the same as that of ref 37. The potential is a sum of
Lennard-Jones potentials, one for each pair of atoms. It is the
T Part of the special issue “Robert E. Wyatt Festschrift’. same as the potential used in ref 30 and is written in terms of
* E-mail: Xiaogang.Wang@umontreal.ca; Tucker.Carrington@umontreal.ca. scaled coordinates. The scaled Lennard-Jones potential is
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o2 However, it does not affect a function of the vibrational
Q coordinates of molecules with fewer than four atoms because
H such molecules have no dihedral coordinates. It is for this reason
i 0o that odd-parity vibrational states only exist for molecules with
>/@ more than three atoms. The stretch functions are products of
Ty i three potential-optimized discrete-variable represent&itn
@/l (PODVR) functions, and the 6-d basis functions are therefore
e (109 (1) (T 0, (01 021 62) (4)
To

where thegg(r;) are the PODVR functions. The PODVRs for
r; andr, are identical and computed from a reference potential

61 obtained by setting all other coordinates to their equilibrium
@ values. The PODVR forg is discussed in the next section.
\
" [ll. Choosing ro Basis Functions to Account for

Conversion Between Two Equilibrium Structures

The dimensionless pairwise additive /Avotential has two
@ equivalent tetrahedral equilibrium structures with= —6.0.
- The two rearrangement pathways are illustrated in Figure 2.
We call them insertion and torsion. They share one saddle point
atV = —5.07, where Aris a rhombus (diamond-like equilateral
guadrangle). Proceeding along the insertion pathwgyde-
creases until one of the A¥Ar diatomics is inserted into the
71 other Ar—Ar diatomic. The rhombus saddle point israt= 0.
2 Proceeding along the torsion pathway, one-Ar diatomic
rotates about the interdiatomic ax#, changes from 90 to 60
(at the saddle point) to 90and¢, changes from 90 to O (at the
@ @ saddle point) to—90°.

®

The calculations are done with a KEO written for use with a
Figure 1. Diatom—diatom Jacobi (upper) and satellite (lower) vectors. volume elgme_nt Q)dr1drgs|n(61)d013|n(02)d¢9?d¢2. The true
Definitions of the angles for the satellite vectors are the same as thoseWave function is related t&, the wave function we compute,

of the Jacobi vectors and are not shown. For the satellite ve@dss, by Wiue = (rorir2) *W. The KEO is singular ifo = 0 orry =
the position of the canonical point on the line joining the center of 0 orr, = 0. Only therp = 0 singularity is important because,
mass of atoms 3 and 4 and center of mass of atoms 1 and 2 and dependg r, = 0 orr, = 0, the wave functions are all very small. To

on the masses and positions of the nuclei. ensure that all KEO matrix elements are finite, one must choose

r12 — 2r-6, wherer is a scaled interatomic distance. In the 0asis functions that behave gs(with p > 1) close toro = 0.
KEO of ref 37, the mass of each of the atoms is replaced by Such basis functions remove the singularity in the integral of
the dimensionless mags—= 213mo2, wherem is the mass of € KEO terms with ”. A good way to cope with the
the Ar nucleus, and ande are the core radius and well depth  Singularity is to use spherical oscillator basis functitis.

of the unscaled Lennard-Jones potential, respectively. We useSpherical oscillator basis functions matrix elements are finite,
the same value as Nightingale and Melik-Alaverdian! = and spherical oscillator basis functions have the additional

6.9635x% 10430 advantage that, if the order of the Laguerre polynomials is
The basis functions we use are products of parity-adapted hosen correctl§? they behave correctly neas = 0. Instead

bend and stretch functions. The parity-adapted bend functions©f Spherical oscillator functions, we have used a PODVR built
we use are from sine functions. Because sine functions approach 0 linearly

asro approaches 0, the sine-basis matrix elements are all finite.

P 1 AP They are not exact eigenfunctions of a piece of the KEO, but

|u|1|2mz L= Nmz _2 [1alom, T (=1)71llm, (1) they do include potential information and are easier to use. To
define the PODVR fory, we use a reference potential defined

with Ny, = (1 + Omy,0) Y2, whereP = 0 and 1 correspond to by setting bend coordinates equal to equilibrium values and

even and odd parity, respectively, amg = 0. If P= 1, m, = minimizing the potential with respect tg@ andr,. The resulting
0 is not allowed. These basis functions are linear combinations potential is flat close tao = 0. The 24 PODVR functions
of defined in the range [0.0, 4.0] are used.

1 . g IV. Symmetry Assignment Using Correlation Between the
[0, 02, dolllzml= 4 /504" (01) )7 (6) €7 (2) Molecular Symmetry Group and the Coordinate
Symmetry Groups

where ©/" () is a normalized associated Legendre function  As mentioned briefly in the Introduction, it is frequently the

with the (~1)™ Condon-Shortley phase factrandm, = —m.. case that one wishes to use coordinates with which it is not
Note that the inversion operaté* affects a function of the  possible to exploit the full symmetry. The full symmetry cannot
vibrational coordinaté$ be exploited if one of the operations in the molecular symmetry

. group, when applied to one of the basis functions, yields a
B f(rg, 1, 1o 01, 05, @) = (1o, 14, 15, 04, 65 =) (3) function that is not a linear combination of basis functions. In
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Figure 2. Two rearrangement pathways between two equilibrium structures, insertion (upper) and torsion (lower).

TABLE 1: Character Table of S;, Taken from Table 5-3 of TABLE 2: Character Table of Gg&
Ref 44 This Work DykéS E (12) (13)(24) (12)(34) (1324)
Sym E (12) (12) (34) (123) (1234) (34) (14) (23) (1423)
1 6 8 8 6 A A 11 1 1 1
A 1 1 1 1 1 B; B: 1 1 -1 1 -1
B 1 -1 1 1 -1 Az B, 1 -1 1 1 -1
E 2 0 2 -1 0 B, Ao 1 -1 -1 1 1
F 3 1 -1 0 -1 E E 2 0 0 -2 0
G 3 -1 -1 0 1

2 The Gi6 symmetry labels are obtained by adding-asuperscript
this paper, we call the group composed of operators, which when(corresponding to even/odd parity, respectively) to the corresponding
applied to any of the basis functions gives a function in the GeSymmetry labels.

basis, the coordinate symmetry group. The coordinate symmetrytag| E 3: Correlation Table between S, and Gs

group is a subgroup of the molecular symmetry group.

The molecular symmetry group of Ars the permutation- S Gs
inversion groupGss = {E, E*}®S,, where{E, E*} is the A A
inversion group an& is the permutation group of four identical B Pe
particles** The coordinate symmetry group 815 = {E, E éliéz
E*}®Gg, WhereGg = {E, (12} ®{E, (34} ®{E, (13) (24} is a G Bt

permutation group. Operators not in the coordinate symmetry

group are excluded because, when we operate with them onyne pasis size is increased) ddevels inS.. B; andE levels

basis functions, we do not obtain functions in the basis. For {hat are very close arE levels inS:. B, andE levels that are
example, (13) is excluded because the new coordinates obtainecj,ery close ares levels inS,. A; levels that are not very close

by operating with (13) are complicated functions of the old g other levels aré levels inS;, andA; levels that are not very
coordinates, and therefore, acting with (13) on a basis function ¢jgse to other levels af@levels inS;. Splittings between levels

of the old coordinates gives a complicated function which is \yhich become degenerate as the basis size is increased are lower
not in the basis. bounds of the error in the finite basis results. We previously

One is therefore forced to work in the coordinate symmetry ysed this correlation table technique to assign symmetry labels
group and can easily obtain levels labeled by the irreducible of hend states of Ci6

representations of the coordinate symmetry group but would

like to label the levels with irreducible represen_tations c_)f the \/ calculational Details

molecular symmetry group. For Arwe can do this by using

the correlation table betweé&h andGg. To make the correlation In Table 4, we summarize the action of symmetry operations
table, we need character tables farand Gg. The character on coordinates and basis functions for four-atom molecules. The
table of theS; group is given in ref 44 and reproduced in Table effect of (12), (34), and (13) (24) on our basis functions is given
1. We take the character table 1Gg from ref 45 where it was in the diatom-diatom section of the table. Combining these
used to study (kD). It is reproduced in Table 2, but the results with the factorizatio®s = {E, (12} ®{E, (34} ®{E,
symmetry labels of Dyke are renamed. We label states that are(13) (24}, we deduce that basis functions witheven and;
symmetric/antisymmetric with respect to (13)(24) wiiiB, even transform liké\; or By; basis functions witl; odd and,
whereas Dyke used/B for symmetry with respect to (1324). odd transform likeA; or By; basis functions witH; (I2) even
Following Dyke, we label states that are symmetric with respect andl (1) odd transform likeE. We can, therefore, do separate
to either (12) or (34) with 1/2. From the character table§gf  calculations for the three cases: Igi)= even,l, = even; (ii)l;

and S, the corresponding correlation table is derived and = odd,l; = odd; and (jii)l; = even,l; = odd. For case (i), we
presented in Table 3. Using the correlation table and the make a projection operator for (13) (24) and use the symmetry-
computed energy levels, we can establish a mapping betweeradapted Lanczos (SAL) methd® to determineA; and B;
irreducible representations @g and those ofS, (and hence  levels. Similarly for case (i), we determinf and B levels.
between irreducible representations@fs and those 0fG,,). For the bend basis functions, we Usgx = Mnax = 38, 41

A; andA; levels that are very close (and become degenerate asGauss-Legendre quadrature points fiy and6,, and 81 equally
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TABLE 4: Symmetry Operations for a System of Four Identical Atoms; m = —m

operations effect of(01, 02, ¢2; @, 8, 7) effect on|l4lomp; JKMO effect onu\, effect on vectors
Diatom—Diatom Jacobi Vectors (Figure 1a)
(12) f(r — 01,02, g2+, 0, B, y + 1) (—1)1/14lomp; IKMO (—1)I1UEJ’|\A§12,K flip of ry
122
(34) f(01, T — 02, 2+ 7; 0, B, ) (—1)1/l4lomp; IKMO (_1)|2uiJ’I\Ar':12'K flip of ry
122
(13)(24) f(r— 6w — O+, =B,y —¢)  (1PHte|lhmy; IKMO - (—1)#+P M (K > 0)  flip of ro, exchange
o of ryandr,
(—1) e (K =0)
Satellite Vectors (Figure 1b)
(12) f(02, 01, —¢2, o, B, ¥ + ¢2) 12l 1my; JIKMO Ui (K > 0) exchange of ; andr»
(= 1) U oK = 0)
(34) f(.7'l’ — 01, 1 — 0>, —¢ T+, T — ,B, _j/) (_1)‘”'1“2“1'2[7}2; J_KMD (—1)|1+|2+P ui]’Iwr':b'K ﬂlp of ro
122
Any Vectors
E* f(01, 02 —o; T+ 0O, T — ﬁ, a — y) (_1)‘]“1|2ﬁ’|z; JRMD (—1)P ui)’lwr';z'K ﬂlp of ro,r, ro
122
TABLE 5: Vibrational Levels of Ar 4 (up to —4.40%}

Al (A,) B/ (B,) A (A) B, (By) E*(E)
—5.1181A (B") —4.8610F* (G") —4.9327E* (E") —4.6710G* (F") —4.8610F* (G")
—4.9327E" (E7) —4.7080F " (G") —4.7520E" (E7) —4.5166G* (F") —4.7080F" (G)
—4.8008A" (B) —4.6049F (G") —4.6617E* (E") —4.4600G* (F") —4.6709G* (F)
—4.7521E (E") —4.5846F" (G") —4.6172E (E") —4.4180G" (F") —4.6051F " (G")
—4.7250A (B) —4.5359F* (G") —4.5682B* (A) —4.5847F* (G")
—4.6617E* (E) —4.4841F* (G") —4.5569E* (E") —4.5358F (G")
—4.6299A" (B7) —4.ATT4FH(GY) —4.5216E" (E7) —4.5165G" (F7)
—4.6172E (E") —4.4332F(G") —4.4756E" (E") —4.4840F (G")
—4.5861A (B") —4.4287F(G") —4.4622E" (E") —4.4772F(G")
—4.5570E* (E") —4.4029F* (G") —4.4380B* (A) —4.4603G* (F)
—4.5278A (B) —4.4292E* (E") —4.4336F (G")
—4.5215E" (E) —4.4016E" (E7) —4.4287F (G)
—4.4834A" (B~ —4.4180G" (F)
—4.4756E" (E") —4.4045F (G")
—4.4631A* (B)

—4.4623E* (E)
—4.4291E* (E)
—4.4279A% (B)
—4.4013E* (E)

aThe columns are labeled by irreducible representations of the coordinate symmetry group. Symmetry labels after each level are for the molecular
symmetry group. Each level has two molecular symmetry group labels because even- and odd-parity levels are equal to the number of digits given.
Bosonic levels At or A7) are in bold.

spaced, equal weight points in the range [0] Br ¢,. Forr;
and r,, we use 10 PODV#R4 functions obtained from

TABLE 6: A Comparison of Bosonic Levels of This Work
and Those Computed with the CFMC Methodf?22

eigenfunctions of a 1D cut potential in the range [0.5, 5.0]. Note parity ref 32 this work
that the potential cut we use does not correspond tp Ar i —5.11814605 —51181
dissociating to Art+ Ars, and at large;, our reference potential + —4.80089773 —4.8008
is steeper than the reference potential that dissociates tb Ar + —4.7251567 —4.7250
Arz. Nonetheless, the long-range behavior of our reference + —4.630025 —4.6299
potential is not biasing our results because its range is large + —4.586389 —4.5861
enough. As explained in Section IIl, we choase= 0 basis - —4.5682
functions to ensure that the true wave functionpat 0 is finite + ~4.5278

: : + —4.4834
and possibly nonzero. The reference potential for the PODVR T —4.4631
we use is defined there. The direct product basis function size — —4.4380
is 12.8, 11.9, and 12.3 million for th& + B, A, + B;, and + —4.4279

E* symmetry blocks, respectively, and 11.0, 11.9, and 11.4
million for A, + B,, A, + B;, and E- symmetry blocks,
respectively. A potential ceiling is imposed to reduce the spectral rq is small#® but we find that levels computed with and without
range and, hence, accelerate convergence of the Lanczoshe approximation are the same to 5 significant digits. To avoid
calculation*3 We found that a ceiling value of 500 introduces the approximation, we compute numerically exact matrix
errors smaller than 10. elements in the primitive sine basis (using a Simpson’s rule
We use the diagonal approximation for the PODVR matrix with enough points) and transform to the 1-d eigenfunction basis
elements of 2 in the KEO. This approximation is poor when and then to the PODVR basis. For higher energy levels for

aThe +/— refer to even/odd parity.
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which the amplitude of the wave function is larger closedo 25 B O 10 T
= 0, avoiding the approximation would be more important. The 2 L |"| #1 gl #1
diagonal approximation has the advantage that the matrix __ 15 b [ o gk ([ ]
vector products are faster. £ | L [ | 1
© 1 f I. a 4 [ -
VI. Results 0.5 |- ' 27 \ i
All of the vibrational levels up to-4.40 are given in Table 0 : e b '
5. Convergence errors are estimated to be smaller than 0.000% 2 T ! J & LS T
by comparing with levels obtained with larger basis sets. Each 15 | f #2 I ."' #2
. . . . . | 4 N 2
column is labeled with an irreducible representation of the — (| - [
coordinate symmetry groufie. Even- and odd-parity levels 2 r f I'. = |
are split by less than 0.0001, indicating a slow rearrangement g5 L = i
between the two equilibrium versions. According to a previous |
. . . . . . 1 1 1 P Y
variational Monte Carlo study using a very similar potential, 0 0
the ground state has no amplitude in the saddle redidws 25 L 10 " :
discussed in Section IV, using the correlation table, we 2+ f #3 8 | #3 -
determine the symmetry labels of the molecular symmetry group —~ 15} ," — 6 [ ."', d
that appear with each level in Table 5. Levels in different s 4L ( & al (1 ]
columns that are degenerate mustihd-, or G in S, and the I : | -
remaining levels must b& or B. Only theA™ andA~ states are ol i 7 2t . ¢
permutation invariant. Note that the lowest state has higher 0 S 0 =
energy than five A states. We can compare the even-parity 1.5 T T T 4 R
levels with those obtained by Nightingale et al. using the CFMC II'. #15 3 I . #15]
method. The ground-state energy we compute agrees well with _ 1 , 'I } I
the result £5.11881) of ref 30. For excited states, the new < (] =2 /| Z
numbers reported in ref 32 agree with our results; see Table 6. 0.5 |- I . 1 b i
The energy levef8 obtained using the adiabatic hyperspherical N # b
approach have larger errors because it is an approximate method [ e — L
The fact that the splittings are small implies that wave 0 45 90 135 180 0.5 1.5
functions are very small near the rhombus saddle point. We 92 (deg) fo (bohr)

have used the wave functions we computed to determine reducedrigure 3. Probability distribution functions fop, andr, for selected

probability distributions

even-parity bosonic states. State numbers (only counting the bosonic

states) are given in each figure. The energies-e5e1181,—4.8008,

P(r) = [ d,sing, [ do,sin6, [ dg, [ dr,

2

—4.7250, and-4.3315 for states #1, 2, 3, and 15, respectively.

o [P0, 0p ¢ T, 11, 1) very high energies, some states are found to have appreciable
ﬁ) dr o ®) amplitudes near the saddle point.
The CFMC method appears very promising. The main
_ . 7 . o o difficulty seems to be the choice of good trial functions. A
Po(¢2) = jg) do,sin 91»/5 do;sin 02-/(; droﬁ) dr, Monte Carlo method is used to project contributions from higher
o 2 energy wave functions from the trial functions. If the trial
j; dro| (0, 05, @5, T, 11, 1))l (6) functions are poorly chosen, noise can make it very hard to

compute accurate energy levels. In this paper, we point out that
whereW is the wave function obtained from the KEO we used. using trial functions that depend only on interatomic distances
Pi(ro) is defined so thayPi(ro)ro?dro = 1 because it is the  does not enable one to compute odd-parity vibrational states,
amplitude of the wave function that has not been altered by which exist for any molecule with more than three atoms.
absorbing part of a volume element that is of interes(fo)
or Py(¢) is large nearo = 0 and¢, = 0, then interconversion Acknowledgment. This work has been supported by the
is important. For the eveA states, the first state with nonzero Natural Sciences and Engineering Research Council of Canada.
amplitude at the saddle point is found at a very high energy Calculations were done on a computer of tHeé& qlkecois

(See Figure 3).

VIl. Conclusion

We have used PODVR and spherical harmonic-type basis
sets and the Lanczos algorithm to compute vibrational levels
of Ars. We exploit the symmetry of the coordinate symmetry
group, a subgroup of the full symmetry group, and use the
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